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Abstract:

In this paper, a method is proposed for testing
statistical hypotheses about the fuzzy
parameter of the underlying parametric
population. In this approach, using definition
of fuzzy random variables, the concept of the
power of test and p value is extended to the
fuzzy power and fuzzy p value. To do this, the
concepts of fuzzy p value have been defined
using the a-optimistic values of the fuzzy
observations and fuzzy parameters. This paper
also develops the concepts of fuzzy type-I,
fuzzy type-Il errors and fuzzy power for the
proposed hypothesis tests. To make decision
as a fuzzy test, a well-known index is
employed to compare the observed fuzzy p
value and a given significance value. The
result provides a fuzzy test function which
leads to some degrees to accept or to reject the
null hypothesis. As an application of the
proposed method, we focus on the normal
fuzzy random variable to investigate
hypotheses about the related fuzzy parameters.
An applied example is provided throughout the
paper clarifying the discussions made in this

paper.

1 Introduction The purpose of statistical
inference is to draw conclusions about a
population on the basis of data obtained from a
sample of that population. Hypothesis testing
is the process used to evaluate the strength of
evidence from the sample and provides a

framework for making decisions related to the
population, i.e., it provides a method for
understanding how  reliably one can
extrapolate observed findings in a sample
under study to the larger population from
which the sample was drawn. The investigator
formulates a specific hypothesis, evaluates
data from the sample, and uses these data to
decide whether they support the specific
hypothesis.  The parametric
approaches usually depend on certain basic
assumptions about the underlying population

classical

such as: crisp observations, exact parameters,
crisp hypotheses, and crisp possible decisions.
In practical studies, however, it is frequently
difficult to assume that the parameter, for
which the distribution of a random variable is
determined, has a precise value or the value of
the random variable is recorded as a precise
value or the hypotheses of interest are
presented as exact relations, and so on.
Therefore, to achieve suitable testing statistical
methods dealing with imprecise information,
we need to model the imprecise information
and extend the usual approaches to imprecise
environments. Since its introduction by Zadeh
(1965), fuzzy set theory has been developed
and applied in some statistical contexts to deal
with uncertainty conditions such as above
situations. Specially, the topic of testing
statistical hypotheses in fuzzy environments
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has extensively been studied. Below is a brief

work. Arnold (1996, 1998) presented an
approach for testing fuzzily formulated
hypotheses based on crisp data, in which he
proposed and  considered  generalized
definitions of the probabilities of the errors of
type-I and type-II. Viertl (2006, 2011) used the
extension principle to obtain the generalized
estimators for a crisp parameter based on
fuzzy data. He also developed some other
statistical inferences for the crisp parameter,
such as generalized confidence intervals and p
value, based on fuzzy data. Taheri and
Behboodian (1999) formulated the problem of
testing  fuzzy  hypotheses  when  the
observations are crisp. They presented some
definitions for the probabilities of type-I and
type-II errors, and proved an extended version
of the Neyman—Pearson Lemma. Their
approach has been extended by Torabi et al.
(2006) to the case in which the data are fuzzy,
too. Taheri and Behboodian (2001) also
studied the problem of testing hypotheses from
a Bayesian point of view when the
observations are ordinary and the hypotheses
are fuzzy. Taheri and Arefi (2009) presented
an approach to the problem of testing fuzzy
hypotheses, based on the so-called fuzzy
critical regions.  Grzegorzewski  (2000)
suggested some fuzzy tests for crisp
hypotheses concerning an unknown parameter
of a population using fuzzy random variables
(FRVs). Montenegro et al. (2001, 2004), using
a generalized metric for fuzzy numbers,
proposed a method to test hypotheses about
the fuzzy mean of a FRV in one and two
populations settings. Gonzalez-Rodriguez et
al. (2006) extended a one-sample bootstrap
method of testing about the mean of a general
fuzzy random variable. Gil et al. (20006)
introduced a bootstrap approach to the
multiple-sample test of means for imprecisely
valued sample data. Chachi and Taheri (2011)
introduced a new approach to construct fuzzy
confidence intervals for the fuzzy mean of a
FRV. Filzmoser and Viertl (2004) and
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review of some studies relevant to the present

Parchami et al. (2010) presented p value-based
approaches to the problem of testing
hypothesis, when the available data or the
hypotheses of interest are fuzzy, respectively.
Hryniewicz (2006b) investigated the concept
of p value in a possibilistic context in which
the concept of p value is generalized for the
case of imprecisely defined statistical
hypotheses and vague statistical data. On the
other hand, there have been some studies on
non-parametric statistical testing hypotheses in
fuzzy environment. Concerning the purposes
of this paper, let us briefly review some of the
literature on this topic. Kahraman et al. (2004)
proposed some algorithms for fuzzy non-
parametric rank-sum tests based on fuzzy
Grzegorzewski(1998)
introduced a method to estimate the median of

random  variables.

a population using fuzzy random variables. He
(Grzegorzewski 2004) also demonstrated a
straightforward  generalization of some
classical non-parametric tests for fuzzy
random variables based on a metric in the
space of fuzzy numbers. He also
(Grzegorzewski 2005, 2009) studied some
non-parametric median fuzzy tests for fuzzy
observations showing a degree of possibility
and a degree of necessity (Dubois and Prade
1983) for evaluating the underlying
hypotheses. In addition, he (Grzegorzewski
2008) proposed a modification of the classical
sign test to cope with fuzzy data which was so-
called bi-robust test, i.e., a test which is both
distribution free and which does not depend so
heavily on the shape of the membership
functions used for modeling fuzzy data.
Denceux et al. (2005), using a fuzzy partial
ordering on closed intervals, extended the non-
parametric ranksum tests based on fuzzy data.
For evaluating the hypotheses of interest at a
crisp or a fuzzy significance level, they
employed the concepts of fuzzy p value and
degree of rejection of the null hypothesis
quantified by a degree of possibility and a
degree of necessity. Hryniewicz (2006a)

Page | 2


http://www.jbstonline.com/

Mprs.L.Bala Sarswathi, JBio sci Tech, Vol 10(1),2022, 01-08

investigated the fuzzy version of the
Goodman—Kruskal y -statistic described by
ordered categorical data. Lin et al. (2010)
considered the problem of two-sample
Kolmogorov—Smirnov test for continuous
fuzzy intervals based on a crisp test
statistic.Taheri ~and  Hesamian  (2011)
introduced a fuzzy version of the Goodman—
Kruskal y -statistic for two-way contingency
tables when the observations were crisp, but
the categories were described by fuzzy sets. In
this approach, a method was also developed
for testing of independence in the two-way
contingency tables. Taheri and Hesamian
(2012) extended the Wilcoxon signed-rank test
to the case where the available observations
are imprecise and underlying hypotheses are
crisp. Hesamian and Chachi (2013) developed
the concepts of fuzzy cumulative distribution
function and fuzzy empirical cumulative
distribution function and investigated the large
sample property of the classical empirical
cumulative distribution function for fuzzy
empirical cumulative distribution function.
They proposed a method for developing two-
sample Kolmogorov—Smirnov test for the case
when the data are observations of fuzzy
random variables, and the hypotheses are
imprecise. For more on fuzzy statistics
including testing hypotheses for imprecise
data, see for example Bertoluzza et al. (2002),
Buckley (2006), Kruse and Meyer (1987),
Nguyen and Wu (2006), Viertl (2011). This
paper develops an approach to test hypotheses
for an unknown fuzzy parameter based on
fuzzy random variables. To do this, we extend
the concept of fuzzy power function and fuzzy
p value to investigate the hypotheses of
interest. Finally, a decision rule is suggested to
accept or reject the null and alternative
hypotheses. We also provide a computational
procedure and an example to express the
proposed method to test statistical hypotheses
for a normal FRV. This paper is organized as
follows: Section 2 briefly reviews the classical
parametric testing hypotheses and some
definitions from fuzzy numbers. In the same
section, some results about a-optimistic values
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of a fuzzy number are derived to recontract a
so-called definition of fuzzy random variables
introduced in Sect. 3. In Sect. 4, one-sided and
two-sided hypotheses about a fuzzy parameter
of a FRV are defined. The concept of fuzzy
power and fuzzy p value for testing hypotheses
about a fuzzy parameter of a continuous
parametric population is also introduced.
Then, the proposed method is applied for
testing hypotheses about the fuzzy parameters
of a normal FRV in Sect. 4.1. A numerical
example is then provided in Sect. 5 to clarify
the discussions made in this paper. Section 6
compares the proposed method to the other
similar existing methods. Finally, a brief
conclusion is provided in Sect. 7. In addition,
the proofs of the main results in this paper are
provided in Appendix.

2 Preliminaries:

Testing statistical hypotheses: the classical
approach

Let X = (Xy..... Xy) be a random sample, with the
observed value x = (xy...... iy ), from a continuous pop
ulation with density function fy where § € &@ C RF, p = L.
The decision rule to test the null hypothesis Hy @ 8 £ &y
versus the alternative H) : # € & is typically denoted by

I i Tix) e Cy.

PX=10 T ¢ Cs,

where C; < K isthe critical region, & is the significance level,
and T(X) is a test statistic. The power function of ¢(X) is
defined by m,(#) = Es[p(X)] = Pa(T(X) € C;). Note
that, if the underlying family of distribution functions has
the MLR property (Monotone Likelihood Ratio property) in
T then m () = Eg[p(X)] is a non-decreasing function of
# (for more see Lehmann and Romano 2005; Shao 2003).
Finally, at a given significance level 3, the hypothesis Hy
is completely rejected if and only if p value <= &, where
pvalue = inf{d £ [0, 1] : T(x) € C;} (Shao 2003). So, to
accept or reject the null hypothesis, we have a test as follows

1 if p value < &,

1 =
vix) 0 if p valoe = 4.

Fuzzy numbers

Let R be the set of all real numbers. A fuzzy
set of R is a mapping ua : R — [0, 1], which
assigns to each x € R a degree of membership
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0 <pA (x) < 1. For each a € (0, 1], the subset
{x € R| pa (x) > a} is called the level set or a-
cut of A and is denoted by A [a]. The set A [0]
is also defined equal to the closure of {x € R |
pua (x) > 0}. A fuzzy set A of R is called a
fuzzy number if it satisfies the following three
conditions

l. For each @ £ [0, 1]. the set .I[n] is a compact inter
which will be denoted by [AL. AV, Here, AL = inf|.
E|pilx) = o and -A;L =sup{xr € B | pj(x) = o}
Fore. f € [0, 1], withe < B, A[f] C Ale].

3. There is a unigue real number x* = 1.: € |, sucht

b2

Ax*) = 1. Equivalently, the set Al]isa singleton.

The set of all fuzzy numbers is denoted by
F(R). Moreover, we denote by Fc(R) the set of
with

all fuzzy numbers continuous

membership function.

Lemma 1 (Lee 2005) Let A € F(E). Then, both the Haps
a++ AL and o — AY are left continuous on [0, 1].

A L R-fuzzy number A=(a,d,d ) g where d.a =, 1
defined as follows
(x) Ll"!;l"] :J—.'.J"IEJ.'"_-'H.
tilx) = w
i R(=") a<x=a+td,

where L and R are continuous and strictly
decreasing functions with L(0) = R(0) = 1 and
L(1) = R(1) = 0 (Lee 2005). A special type of
L R-fuzzy numbers is the socalled triangular
fuzzy numbers with the shape functions L(x) =
R(x) = max{0, 1 — x|}, x € R. A well-known
ordering of fuzzy numbers, used in the
sections below for defining the hypotheses of
interest is defined as follows:

Definition 1 (Wu 2005) Let A, B € F(R), then

L. A = (#)B, if AL = (#)BL and AY = (#)BY for any

a € [0, 1].

2. A = [-:]E. il'.;fl' = [-c:l-gl_{' and EL = i-:JéL';" for any
a € [0, 1].

1A - (=)8B, il'.lffl' = [::I-EI_{' and 3;er = i:-JEL';" for any
a € [0, 1].

o-Optimistic values In this subsection, we
drive some results about the aoptimistic values
of a fuzzy number. We will use these results to
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variable that we use in the next sections. For a
given fuzzy number A , the credibility of the
event {A > r} is defined by Liu (2004) as

follows:
( sup jg(y)+1— sup j!;;l,'_‘.'!).
ve[r,+oa) yE(—o0,F)

i1

Cr[; =r}=

P |

It is worth noting that: (1) Cr{A > r}€[0, 1]
and (2) Cr{A >r} =1 — Cr{A <r}. Here, we
recall the definition of the a-optimistic, but
with a small change in the structure of the
original definition. For a fuzzy number A and
the real number a € [0, 1], the aoptimistic
value of A , denoted by A a, is rewritten by A,
=sup{x € A[0]| Cr{A >x} > a}. (2) Remark
1 It is mentioned that, according to the Liu’s
definition, the a-optimistic value of the fuzzy
number A is defined as follows A o :=sup{x €
R | Cr{A = x} > a}. (3) Therefore, we observe
that Ap=wand A, E[ALa,ARa)forae
(0, 1]. While, by Eq. (2), each value of A
belongs to A [0] (which is a compact interval,
due to the definition of a fuzzy number), for all
o € [0, 1]. Moreover, it is clear that A a is a
non-increasing function of a € [0, 1] (see Liu
2004, for more details).

Numerical example

In this section, we provide a numerical
example to clarify the discussions in this paper
and give the possible application of the
proposed method for normal FRVs. Example 2
(Elsherif et al. 2009) Based on a random
sample of the received signal from a target,
assume we have fuzzy observations x =
(X1,X2,...X25) (as shown in Table 1) measured
in nanowatt which is approximately normally
distributed N(0 ,02). We wish to test the
following hypothesis:

Hy: 8 =y = (1.35,1.50, 1.80)r,
Hl H I"] - .
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Applying the procedure proposed in Sect. 4.1,

using Remark 6, the fuzzy p value is derived | T '! T ‘ T
point by point and its membership function is i [
shown in Fig. 1. This membership function r
can be interpreted as “about 0.075”. Therefore, '%”"‘
at level of 6 = 0.05, the fuzzy test for testing H g vér
0:67(1.35, 1.50, 1.80)T is obtained as y( X) = £ Usr
|# 0.095 I . E oif
- - I'. So, with respect to the observed &l
fuzzy observations and at significance level of : 01k
6 = 0.05, the null hypothesis H 0 : 07 (1.35, il
1.50, 1.80)T is accepted with a degree of 0.905 el 4 Codd ik

and it is rejected with a degree Of 0.095 Such 001 0015 002 0025 003 0035 004 D5 005 0055 006 0065 007 0075 008 DOBS 009 0085 01

a result may be interpreted as “we absolutely

tend to accept H 0”. In addition, based on
Remark 7, the membership of the fuzzy power
at 67+ (0.50, 0.70, 0.80)T is shown in Fig. 2

which is interpreted as “about 0.999”.

Now, suppose that we want to test the

1 1 |
following hypotheses about ¢ 2: Wl el
- ¥ i uar
Hp: &= = a5 = (0.30,0.50,0.70)r, gl
Hy:5 = 5], e
o 0§k
E
. 0ip
Table 1 The observed fuzzy random sample in 5
4p
Example 2 g
g
a]
02
7= (002,010,023 T = (008,020,037 = (015,030, 046)r N
AR
7= (0.28,040,0.56)7 5 =(0.37,050,063)7 = (0.42,0.60,0.14)r . ‘ ' ‘ ‘
- - - 0
7= (054,070,083 i = (0.66,080,093) %= (0.72,090, 1.36)y oo 0 I 0w 09 [

xjg = (085, L0D, 115}y
Ty = (117, 130, 148);
x16= (137, Lo, 1.78)r
Tg=(L75, 190, 208);

T = (206,220, 23)7
s = (232,250, 260)7

Xy = (098, 110, 1.22);
T = (125, 140, 1.54)7
7= (153, 170, 1.88)7
Ty =(1.76,2.00,2.2%);
Ty = (205,230, 246)y

xjp = (105, 1.20, 1.32);
5= (130, 150,167
Xig = (162, L&D, 1L97)r
o= (193,210,227
Ty =1(221,240, 255y

Fig. 1 The membership function of the fuzzy p
value and the significance level in Example 2
for testing H 0 : 67 (1.35, 1.50, 1.80)T against
H1:6"<(1.35,1.50,1.80)T

Fig, 2 The membership function of the fuzzy ptmt‘rulf;' = (0.50,0.70, 0.80)7 in Example 2

1
T T T T T T T T T T T
{H] B
[] S
1
1
[T S
a ]
ZOTfh
ﬂ 1
T
E 1
gosp o
E 1
1
g Moy
g i
b S|
8 '
02p ot
1
(1] S
i
i Il 1 L L Il | 1 L | 1 1 | L 1

Fig. 3 The membership function of the fuzzy p
value and the significance level in Example 2
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for testing H 0 : 62 (0.30, 0.50, 0.70)T against
H1:062 (0.30,0.50,0.70)T

A comparison study

It should be mentioned that Akbari and Rezaei
(2009, 2010) extended the classical approach
for testing statistical hypotheses about the
(crisp) mean or variance of a normal
distribution by introducing some fuzzy
numbers to interpret the sentences “larger
than”, “smaller than” or “not equal” for
population’s parameters based on imprecise
observations. Parchami et al. (2010) defined an
extension of fuzzy p value for a crisp random
sample of a normal distribution to test
imprecisely hypothesis test about the mean.
Arefi and Taheri (2011) extended the classical
critical region for testing fuzzy hypothesis
about the parameters of the classical normal
distribution based on fuzzy data.Wu (2005)
considered the problem of hypotheses test with
fuzzy data. Based on a concept of fuzzy
random variable, first he defined the fuzzy
mean of the normal distribution. Then, based
on a proposed ranking method, he defined the
hypotheses about the population’s fuzzy mean.
He considered two cases: (1) the variance of
the population is known, (2) the variance of
the population is unknown. Finally, he
introduced a fuzzy test based on the classical
critical region. However, for both cases, he
assigned a crisp number into the structure of
testing hypothesis’s method: for the case (1)
the variance of the population is considered as
a crisp number and for the case (2) the
variance of the fuzzy sample is calculated
based on core of the fuzzy data as a crisp
number. As we observe, in all above methods,
the wvariance of the normal population is
considered as a crisp number. However, for
testing fuzzy hypothesis about mean of a
normal population, it is reasonable that the
variance of the population is also considered
as a imprecise value. So, it may be an
advantage of our method with respect to
abovementioned methods. Geyer and Meeden

www.jbstonline.com

considered the problem of the classical optimal
hypothesis tests for the binomial distribution
(in general for discrete data with crisp
parameter) using an interval estimation of a
binomial proportion (Geyer and Meeden
2005). They introduced the notion of fuzzy
confidence intervals by inverting families of
randomized tests. Then, they introduce a
notion of fuzzy p value in which it is only a
function of the parameters of the model.
Finally, they provided a unified description of
fuzzy confidence interval, fuzzy p values and
fuzzy decision. However, their proposed
method is not a fuzzy method in general, since
this approach does not consider the imprecise
information about the model such as imprecise
observations or imprecise hypotheses and it
does not lead to a fuzzy decision. Viertl (2011)
and Filzmoser and Viertl(2004) also extend a
concept of fuzzy p value when the
observations are fuzzy and hypotheses are
crisp. Arnold (1996, 1998) proposed a method
for testing fuzzy hypotheses about the
population parameter with crisp data. He
provided some definitions for the probability
of type-I and type-II errors and presented the
best test for the oneparameter exponential
family.

As it is observed, in all above-proposed
methods for testing statistical hypothesis, at
least one of the essential population’s
information such as data, hypothesis or
population’s parameters play a crisp role in the
structure of testing procedure. While, by
restructuring the concept of fuzzy random
variable, we involved the population’s
information including: fuzzy data and fuzzy
parameters into the hypothesis test, type-I
error (or type-Il error) and power of test.
Finally, we obtained a fuzzy test to make
decision for accepting or rejecting the fuzzy
hypothesis of interest about the fuzzy
parameters.

Conclusions
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This paper proposes a method for testing
hypotheses about the fuzzy parameters of a
fuzzy random variable. In this approach, we
reconstruct a well-known concept of a fuzzy
random variable using the concept of a-
optimistic values. Then, we extended the
concepts of the fuzzy power test and fuzzy p
value. Finally, based on the credibility index,
to compare the observed fuzzy p value and the
crisp significance level, the fuzzy hypothesis
of interest can be accepted or rejected with
degrees of conviction between 0 and 1.
Although we focused on testing hypotheses
about the parameters of a normal fuzzy
random variable, the proposed method is
general and it can be applied for other kinds of
fuzzy random variables as well. Moreover, it
can be applied for other kind of testing
hypothesis such as comparing two independent
fuzzy random variables of two populations, the
one-way or two-way analysis of variance and
nonparametric approaches including testing
hypothesis. However, the proposed method
can be applied only for fuzzy numbers
involved in a problem of statistical hypothesis
testing. Moreover, the topic of testing
hypothesis for fuzzy parameters of a fuzzy
random variable can be extended to the case
where the level of significance is given by a
fuzzy number, too. To do this, one can easily
apply the credibility index for comparing two
fuzzy numbers into the decision making.

Appendix: Proof of the main results

This appendix provides the mathematical
proofs of the theoretical results in our paper.
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Proof of Theorem I (i) Let g5 : R — [0, 1] be given by

gilx) =Cr(A > x). Then
.Eu =suplx € ﬁ[[}| | g5(x) = a).

First, leta € [0, 0.5). Since

gl{:‘;:u] =3 sup pglyvl+ [ sup plvl
= Ayl ) (-0, 43 )
1

—_ —_
_j:_m_u.

wehave A, > A% . Ontheotherhand, foreachz > A%,
SUD,j. 4oy MG (Y) = AlZ) and sup, o o pz(y) =

1. Therefore,
gilz) = Cr(A =1)
l
=5 s pily)+1— sup  pgiy)
= \velr,+oa) VE(—00,2)
|
= E-d.{,_] < .

Hence, {[x e B | ggi{x) = ] N ':;l;,!zu +o0) = A, which
by the previous part implies that A, = A‘h

Now suppose e € [(L.5, 1] and let xp := supfr = x*
plx) = 2(1 — a)}. Then, pgix) = 2{1 — o). for all
x == xp. Hence,

sup  pilv)=1 and sup pgiv)=2(l—a).

ve|xg,+0a) yeE|—oa,xg)

Therefore, g (xp) = « which implies that ¢ (e} = xp.
On the other hand, for v = xp, since p 3{x) = 2{1 —a),

we have

Il | =

gilx) = ( sup  pily)+1—  sup ;e;;i}'})
ye[x, +oo) ye{—oo,x)

1, .
= ;[I + 1 —pglx)) = e

Hence, ¢ ;(w) = . Note that, according to what has
been proved, ¢;(0.5) = supfx = x% | ujix) = 1} =
x* = 'Ei_;:'-u_sr Thus, the law of ¢ can be written in the
following form.

Yo € [0, 1], ¢gla)
AY 0<a <05,
supfx = x* | pilx) = 2l —a)} 05w =L
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(i1) It is clear that @A is decreasing on [0, 1].
By the previous part, since for each a € [0,
0.5], oA (o) = A U 20, using Lemma 1, @A is
left continuous on [0, 0.5]. For a € (0.5, 1],
suppose {an}n€N is an increasing sequence in
(0.5, 1] with an — a. First, suppose that A
(o) = x*. Then, for each x <x*, pA (x) <2(1 —
o) <2(1 — an). Hence @A (an) > x*, foralln €
N. On the other hand, since an > 0.5, we have
@A (an) < x*. Combining the two arguments,
we obtainpA (an) = x*, for all n € N. Hence,
in this case @A (an) = x* — @A (o) = x*. Now
suppose @A a) < x*, Then, for each y € R with
QA () <y <x*, uA (y) > 2(1 — a). Therefore,
pA (y) > 2(1 — an), for large values of n € N.
This implies that A (on) <y. Hence @A (an)
— @A (a). This completes the proof of the left
continuity of @A on (0.5, 1].

Proof of Lemma 2 First suppose a0 € (0.5, 1]
is a point of continuity of WyA . Let x0 = @A
(00). Then A L 2(1—a0) < x0. If A L 2(1—a0)
< x0 then pA (x) =2(1 —a0), forallx € [AL
2(1-a0) , x0). In this case for each a 2(1 — a0),
we have A L 2(1-a) > x0 which contradicts
the assumption of continuity of yA at aO0.
Hence

YA (00) = A L 2(1-a0) = x0 = @A (a0).

Suppose, on the contrary, that a0 is a point of
discontinuity of wA . Then, there 0 > 0 such
that for each n € N, one can find an € (a0 — 1
n , a) with yA (an)>yA (a0) + 0. With out
loss of generality, we may assume that
{on}n€N is an increasing sequence. Since YA
is a monotonic function, there exists an
increasing sequence {an}n€N converging to
00 such that a n < an, for each n € N, and yA
is continuous on the set {o. n | n € N}. Let also
{Pn}n€EN be a decreasing sequence converging
to 00 which consist of continuity points of yA

Then @A (o n) = yA (a n) > yA (on) > yA
(10) + 0 > A (40) = YA (Bn) = oA (Bn),

for each n € N. Hence

www.jbstonline.com

Vn €N, ¢A (an) — ¢A (Pn)>0,

which implies that @A is also discontinuous at
this point.
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