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Abstract: 

 In this paper, a method is proposed for testing 

statistical hypotheses about the fuzzy 

parameter of the underlying parametric 

population. In this approach, using definition 

of fuzzy random variables, the concept of the 

power of test and p value is extended to the 

fuzzy power and fuzzy p value. To do this, the 

concepts of fuzzy p value have been defined 

using the α-optimistic values of the fuzzy 

observations and fuzzy parameters. This paper 

also develops the concepts of fuzzy type-I, 

fuzzy type-II errors and fuzzy power for the 

proposed hypothesis tests. To make decision 

as a fuzzy test, a well-known index is 

employed to compare the observed fuzzy p 

value and a given significance value. The 

result provides a fuzzy test function which 

leads to some degrees to accept or to reject the 

null hypothesis. As an application of the 

proposed method, we focus on the normal 

fuzzy random variable to investigate 

hypotheses about the related fuzzy parameters. 

An applied example is provided throughout the 

paper clarifying the discussions made in this 

paper. 

1 Introduction The purpose of statistical 

inference is to draw conclusions about a 

population on the basis of data obtained from a 

sample of that population. Hypothesis testing 

is the process used to evaluate the strength of 

evidence from the sample and provides a 

framework for making decisions related to the 

population, i.e., it provides a method for 

understanding how reliably one can 

extrapolate observed findings in a sample 

under study to the larger population from 

which the sample was drawn. The investigator 

formulates a specific hypothesis, evaluates 

data from the sample, and uses these data to 

decide whether they support the specific 

hypothesis. The classical parametric 

approaches usually depend on certain basic 

assumptions about the underlying population 

such as: crisp observations, exact parameters, 

crisp hypotheses, and crisp possible decisions. 

In practical studies, however, it is frequently 

difficult to assume that the parameter, for 

which the distribution of a random variable is 

determined, has a precise value or the value of 

the random variable is recorded as a precise 

value or the hypotheses of interest are 

presented as exact relations, and so on. 

Therefore, to achieve suitable testing statistical 

methods dealing with imprecise information, 

we need to model the imprecise information 

and extend the usual approaches to imprecise 

environments. Since its introduction by Zadeh 

(1965), fuzzy set theory has been developed 

and applied in some statistical contexts to deal 

with uncertainty conditions such as above 

situations. Specially, the topic of testing 

statistical hypotheses in fuzzy environments 

http://www.jbstonline.com/


Mrs.L.Bala Sarswathi, JBio sci Tech, Vol 10(1),2022, 01-08 

ISSN:0976-0172 

Journal of Bioscience And Technology 
www.jbstonline.com 

 

 

 

 
 

Page | 2  
 

has extensively been studied. Below is a brief review of some studies relevant to the present 

work. Arnold (1996, 1998) presented an 

approach for testing fuzzily formulated 

hypotheses based on crisp data, in which he 

proposed and considered generalized 

definitions of the probabilities of the errors of 

type-I and type-II. Viertl (2006, 2011) used the 

extension principle to obtain the generalized 

estimators for a crisp parameter based on 

fuzzy data. He also developed some other 

statistical inferences for the crisp parameter, 

such as generalized confidence intervals and p 

value, based on fuzzy data. Taheri and 

Behboodian (1999) formulated the problem of 

testing fuzzy hypotheses when the 

observations are crisp. They presented some 

definitions for the probabilities of type-I and 

type-II errors, and proved an extended version 

of the Neyman–Pearson Lemma. Their 

approach has been extended by Torabi et al. 

(2006) to the case in which the data are fuzzy, 

too. Taheri and Behboodian (2001) also 

studied the problem of testing hypotheses from 

a Bayesian point of view when the 

observations are ordinary and the hypotheses 

are fuzzy. Taheri and Arefi (2009) presented 

an approach to the problem of testing fuzzy 

hypotheses, based on the so-called fuzzy 

critical regions. Grzegorzewski (2000) 

suggested some fuzzy tests for crisp 

hypotheses concerning an unknown parameter 

of a population using fuzzy random variables 

(FRVs). Montenegro et al. (2001, 2004), using 

a generalized metric for fuzzy numbers, 

proposed a method to test hypotheses about 

the fuzzy mean of a FRV in one and two 

populations settings. Gonzalez-Rodríguez et 

al. (2006) extended a one-sample bootstrap 

method of testing about the mean of a general 

fuzzy random variable. Gil et al. (2006) 

introduced a bootstrap approach to the 

multiple-sample test of means for imprecisely 

valued sample data. Chachi and Taheri (2011) 

introduced a new approach to construct fuzzy 

confidence intervals for the fuzzy mean of a 

FRV. Filzmoser and Viertl (2004) and 

Parchami et al. (2010) presented p value-based 

approaches to the problem of testing 

hypothesis, when the available data or the 

hypotheses of interest are fuzzy, respectively. 

Hryniewicz (2006b) investigated the concept 

of p value in a possibilistic context in which 

the concept of p value is generalized for the 

case of imprecisely defined statistical 

hypotheses and vague statistical data. On the 

other hand, there have been some studies on 

non-parametric statistical testing hypotheses in 

fuzzy environment. Concerning the purposes 

of this paper, let us briefly review some of the 

literature on this topic. Kahraman et al. (2004) 

proposed some algorithms for fuzzy non-

parametric rank-sum tests based on fuzzy 

random variables. Grzegorzewski(1998) 

introduced a method to estimate the median of 

a population using fuzzy random variables. He 

(Grzegorzewski 2004) also demonstrated a 

straightforward generalization of some 

classical non-parametric tests for fuzzy 

random variables based on a metric in the 

space of fuzzy numbers. He also 

(Grzegorzewski 2005, 2009) studied some 

non-parametric median fuzzy tests for fuzzy 

observations showing a degree of possibility 

and a degree of necessity (Dubois and Prade 

1983) for evaluating the underlying 

hypotheses. In addition, he (Grzegorzewski 

2008) proposed a modification of the classical 

sign test to cope with fuzzy data which was so-

called bi-robust test, i.e., a test which is both 

distribution free and which does not depend so 

heavily on the shape of the membership 

functions used for modeling fuzzy data. 

Denœux et al. (2005), using a fuzzy partial 

ordering on closed intervals, extended the non-

parametric ranksum tests based on fuzzy data. 

For evaluating the hypotheses of interest at a 

crisp or a fuzzy significance level, they 

employed the concepts of fuzzy p value and 

degree of rejection of the null hypothesis 

quantified by a degree of possibility and a 

degree of necessity. Hryniewicz (2006a) 
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investigated the fuzzy version of the 

Goodman–Kruskal γ -statistic described by 

ordered categorical data. Lin et al. (2010) 

considered the problem of two-sample 

Kolmogorov–Smirnov test for continuous 

fuzzy intervals based on a crisp test 

statistic.Taheri and Hesamian (2011) 

introduced a fuzzy version of the Goodman–

Kruskal γ -statistic for two-way contingency 

tables when the observations were crisp, but 

the categories were described by fuzzy sets. In 

this approach, a method was also developed 

for testing of independence in the two-way 

contingency tables. Taheri and Hesamian 

(2012) extended the Wilcoxon signed-rank test 

to the case where the available observations 

are imprecise and underlying hypotheses are 

crisp. Hesamian and Chachi (2013) developed 

the concepts of fuzzy cumulative distribution 

function and fuzzy empirical cumulative 

distribution function and investigated the large 

sample property of the classical empirical 

cumulative distribution function for fuzzy 

empirical cumulative distribution function. 

They proposed a method for developing two-

sample Kolmogorov–Smirnov test for the case 

when the data are observations of fuzzy 

random variables, and the hypotheses are 

imprecise. For more on fuzzy statistics 

including testing hypotheses for imprecise 

data, see for example Bertoluzza et al. (2002), 

Buckley (2006), Kruse and Meyer (1987), 

Nguyen and Wu (2006), Viertl (2011). This 

paper develops an approach to test hypotheses 

for an unknown fuzzy parameter based on 

fuzzy random variables. To do this, we extend 

the concept of fuzzy power function and fuzzy 

p value to investigate the hypotheses of 

interest. Finally, a decision rule is suggested to 

accept or reject the null and alternative 

hypotheses. We also provide a computational 

procedure and an example to express the 

proposed method to test statistical hypotheses 

for a normal FRV. This paper is organized as 

follows: Section 2 briefly reviews the classical 

parametric testing hypotheses and some 

definitions from fuzzy numbers. In the same 

section, some results about α-optimistic values 

of a fuzzy number are derived to recontract a 

so-called definition of fuzzy random variables 

introduced in Sect. 3. In Sect. 4, one-sided and 

two-sided hypotheses about a fuzzy parameter 

of a FRV are defined. The concept of fuzzy 

power and fuzzy p value for testing hypotheses 

about a fuzzy parameter of a continuous 

parametric population is also introduced. 

Then, the proposed method is applied for 

testing hypotheses about the fuzzy parameters 

of a normal FRV in Sect. 4.1. A numerical 

example is then provided in Sect. 5 to clarify 

the discussions made in this paper. Section 6 

compares the proposed method to the other 

similar existing methods. Finally, a brief 

conclusion is provided in Sect. 7. In addition, 

the proofs of the main results in this paper are 

provided in Appendix. 

2 Preliminaries: 

Testing statistical hypotheses: the classical 

approach 

 

Fuzzy numbers 

Let R be the set of all real numbers. A fuzzy 

set of R is a mapping μA : R → [0, 1], which 

assigns to each x ∈ R a degree of membership 
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0 ≤ μA (x) ≤ 1. For each α ∈ (0, 1], the subset 

{x ∈ R | μA (x) ≥ α} is called the level set or α-

cut of A and is denoted by A [α]. The set A [0] 

is also defined equal to the closure of {x ∈ R | 

μA (x) > 0}. A fuzzy set A of R is called a 

fuzzy number if it satisfies the following three 

conditions 

 

The set of all fuzzy numbers is denoted by 

F(R). Moreover, we denote by Fc(R) the set of 

all fuzzy numbers with continuous 

membership function. 

 

where L and R are continuous and strictly 

decreasing functions with L(0) = R(0) = 1 and 

L(1) = R(1) = 0 (Lee 2005). A special type of 

L R-fuzzy numbers is the socalled triangular 

fuzzy numbers with the shape functions L(x) = 

R(x) = max{0, 1 − |x|}, x ∈ R. A well-known 

ordering of fuzzy numbers, used in the 

sections below for defining the hypotheses of 

interest is defined as follows: 

 

α-Optimistic values In this subsection, we 

drive some results about the αoptimistic values 

of a fuzzy number. We will use these results to 

reconstruct a definition of fuzzy random 

variable that we use in the next sections. For a 

given fuzzy number A , the credibility of the 

event {A ≥ r} is defined by Liu (2004) as 

follows: 

 

It is worth noting that: (1) Cr{A ≥ r}∈[0, 1] 

and (2) Cr{A ≥ r} = 1 − Cr{A < r}. Here, we 

recall the definition of the α-optimistic, but 

with a small change in the structure of the 

original definition. For a fuzzy number A and 

the real number α ∈ [0, 1], the αoptimistic 

value of A , denoted by A α, is rewritten by A α 

:= sup{x ∈ A [0] | Cr{A ≥ x} ≥ α}. (2) Remark 

1 It is mentioned that, according to the Liu’s 

definition, the α-optimistic value of the fuzzy 

number A is defined as follows A α := sup{x ∈ 

R | Cr{A ≥ x} ≥ α}. (3) Therefore, we observe 

that A 0 = ∞ and A α ∈ [A L α , A R α ) for α ∈ 

(0, 1]. While, by Eq. (2), each value of A α 

belongs to A [0] (which is a compact interval, 

due to the definition of a fuzzy number), for all 

α ∈ [0, 1]. Moreover, it is clear that A α is a 

non-increasing function of α ∈ [0, 1] (see Liu 

2004, for more details). 

Numerical example 

In this section, we provide a numerical 

example to clarify the discussions in this paper 

and give the possible application of the 

proposed method for normal FRVs. Example 2 

(Elsherif et al. 2009) Based on a random 

sample of the received signal from a target, 

assume we have fuzzy observations x = 

(x1,x2,...X25) (as shown in Table 1) measured 

in nanowatt which is approximately normally 

distributed N(θ ,σ2). We wish to test the 

following hypothesis: 
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Applying the procedure proposed in Sect. 4.1, 

using Remark 6, the fuzzy p value is derived 

point by point and its membership function is 

shown in Fig. 1. This membership function 

can be interpreted as “about 0.075”. Therefore, 

at level of δ = 0.05, the fuzzy test for testing H 

0 : θ˜ (1.35, 1.50, 1.80)T is obtained as ψ( X) = 

. So, with respect to the observed 

fuzzy observations and at significance level of 

δ = 0.05, the null hypothesis H 0 : θ˜ (1.35, 

1.50, 1.80)T is accepted with a degree of 0.905 

and it is rejected with a degree of 0.095. Such 

a result may be interpreted as “we absolutely 

tend to accept H 0”. In addition, based on 

Remark 7, the membership of the fuzzy power 

at θ˜∗ (0.50, 0.70, 0.80)T is shown in Fig. 2 

which is interpreted as “about 0.999”. 

Now, suppose that we want to test the 

following hypotheses about σ 2: 

 

Table 1 The observed fuzzy random sample in 

Example 2 

 

 

Fig. 1 The membership function of the fuzzy p 

value and the significance level in Example 2 

for testing H 0 : θ˜ (1.35, 1.50, 1.80)T against 

H 1 : θ˜ ≺ (1.35, 1.50, 1.80)T 

 

Fig. 3 The membership function of the fuzzy p 

value and the significance level in Example 2 
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for testing H 0 : σ2 (0.30, 0.50, 0.70)T against 

H 1 : σ2  (0.30, 0.50, 0.70)T  

 

A comparison study  

It should be mentioned that Akbari and Rezaei 

(2009, 2010) extended the classical approach 

for testing statistical hypotheses about the 

(crisp) mean or variance of a normal 

distribution by introducing some fuzzy 

numbers to interpret the sentences “larger 

than”, “smaller than” or “not equal” for 

population’s parameters based on imprecise 

observations. Parchami et al. (2010) defined an 

extension of fuzzy p value for a crisp random 

sample of a normal distribution to test 

imprecisely hypothesis test about the mean. 

Arefi and Taheri (2011) extended the classical 

critical region for testing fuzzy hypothesis 

about the parameters of the classical normal 

distribution based on fuzzy data.Wu (2005) 

considered the problem of hypotheses test with 

fuzzy data. Based on a concept of fuzzy 

random variable, first he defined the fuzzy 

mean of the normal distribution. Then, based 

on a proposed ranking method, he defined the 

hypotheses about the population’s fuzzy mean. 

He considered two cases: (1) the variance of 

the population is known, (2) the variance of 

the population is unknown. Finally, he 

introduced a fuzzy test based on the classical 

critical region. However, for both cases, he 

assigned a crisp number into the structure of 

testing hypothesis’s method: for the case (1) 

the variance of the population is considered as 

a crisp number and for the case (2) the 

variance of the fuzzy sample is calculated 

based on core of the fuzzy data as a crisp 

number. As we observe, in all above methods, 

the variance of the normal population is 

considered as a crisp number. However, for 

testing fuzzy hypothesis about mean of a 

normal population, it is reasonable that the 

variance of the population is also considered 

as a imprecise value. So, it may be an 

advantage of our method with respect to 

abovementioned methods. Geyer and Meeden 

considered the problem of the classical optimal 

hypothesis tests for the binomial distribution 

(in general for discrete data with crisp 

parameter) using an interval estimation of a 

binomial proportion (Geyer and Meeden 

2005). They introduced the notion of fuzzy 

confidence intervals by inverting families of 

randomized tests. Then, they introduce a 

notion of fuzzy p value in which it is only a 

function of the parameters of the model. 

Finally, they provided a unified description of 

fuzzy confidence interval, fuzzy p values and 

fuzzy decision. However, their proposed 

method is not a fuzzy method in general, since 

this approach does not consider the imprecise 

information about the model such as imprecise 

observations or imprecise hypotheses and it 

does not lead to a fuzzy decision. Viertl (2011) 

and Filzmoser and Viertl(2004) also extend a 

concept of fuzzy p value when the 

observations are fuzzy and hypotheses are 

crisp. Arnold (1996, 1998) proposed a method 

for testing fuzzy hypotheses about the 

population parameter with crisp data. He 

provided some definitions for the probability 

of type-I and type-II errors and presented the 

best test for the oneparameter exponential 

family. 

 As it is observed, in all above-proposed 

methods for testing statistical hypothesis, at 

least one of the essential population’s 

information such as data, hypothesis or 

population’s parameters play a crisp role in the 

structure of testing procedure. While, by 

restructuring the concept of fuzzy random 

variable, we involved the population’s 

information including: fuzzy data and fuzzy 

parameters into the hypothesis test, type-I 

error (or type-II error) and power of test. 

Finally, we obtained a fuzzy test to make 

decision for accepting or rejecting the fuzzy 

hypothesis of interest about the fuzzy 

parameters. 

Conclusions  
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This paper proposes a method for testing 

hypotheses about the fuzzy parameters of a 

fuzzy random variable. In this approach, we 

reconstruct a well-known concept of a fuzzy 

random variable using the concept of α-

optimistic values. Then, we extended the 

concepts of the fuzzy power test and fuzzy p 

value. Finally, based on the credibility index, 

to compare the observed fuzzy p value and the 

crisp significance level, the fuzzy hypothesis 

of interest can be accepted or rejected with 

degrees of conviction between 0 and 1. 

Although we focused on testing hypotheses 

about the parameters of a normal fuzzy 

random variable, the proposed method is 

general and it can be applied for other kinds of 

fuzzy random variables as well. Moreover, it 

can be applied for other kind of testing 

hypothesis such as comparing two independent 

fuzzy random variables of two populations, the 

one-way or two-way analysis of variance and 

nonparametric approaches including testing 

hypothesis. However, the proposed method 

can be applied only for fuzzy numbers 

involved in a problem of statistical hypothesis 

testing. Moreover, the topic of testing 

hypothesis for fuzzy parameters of a fuzzy 

random variable can be extended to the case 

where the level of significance is given by a 

fuzzy number, too. To do this, one can easily 

apply the credibility index for comparing two 

fuzzy numbers into the decision making. 

Appendix: Proof of the main results 

This appendix provides the mathematical 

proofs of the theoretical results in our paper. 
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(ii) It is clear that φA is decreasing on [0, 1]. 

By the previous part, since for each α ∈ [0, 

0.5], φA (α) = A U 2α, using Lemma 1, φA is 

left continuous on [0, 0.5]. For α ∈ (0.5, 1], 

suppose {αn}n∈N is an increasing sequence in 

(0.5, 1] with αn → α. First, suppose that φA 

(α) = x∗. Then, for each x < x∗, μA (x) ≤ 2(1 − 

α) ≤ 2(1 − αn). Hence φA (αn) ≥ x∗, for all n ∈ 

N. On the other hand, since αn > 0.5, we have 

φA (αn) ≤ x∗. Combining the two arguments, 

we obtainφA (αn) = x∗, for all n ∈ N. Hence, 

in this case φA (αn) = x∗ → φA (α) = x∗. Now 

suppose φA α) < x∗. Then, for each y ∈ R with 

φA (α) < y < x∗, μA (y) > 2(1 − α). Therefore, 

μA (y) > 2(1 − αn), for large values of n ∈ N. 

This implies that φA (αn) ≤ y. Hence φA (αn) 

→ φA (α). This completes the proof of the left 

continuity of φA on (0.5, 1]. 

Proof of Lemma 2 First suppose α0 ∈ (0.5, 1] 

is a point of continuity of ψA . Let x0 := φA 

(α0). Then A L 2(1−α0) ≤ x0. If A L 2(1−α0) 

< x0 then μA (x) = 2(1 − α0), for all x ∈ [A L 

2(1−α0) , x0). In this case for each α 2(1 − α0), 

we have A L 2(1−α) ≥ x0 which contradicts 

the assumption of continuity of ψA at α0. 

Hence  

ψA (α0) = A L 2(1−α0) = x0 = φA (α0). 

Suppose, on the contrary, that α0 is a point of 

discontinuity of ψA . Then, there 0 > 0 such 

that for each n ∈ N, one can find αn ∈ (α0 − 1 

n , α) with ψA (αn)>ψA (α0) + 0. With out 

loss of generality, we may assume that 

{αn}n∈N is an increasing sequence. Since ψA 

is a monotonic function, there exists an 

increasing sequence {αn}n∈N converging to 

α0 such that α n ≤ αn, for each n ∈ N, and ψA 

is continuous on the set {α n | n ∈ N}. Let also 

{βn}n∈N be a decreasing sequence converging 

to α0 which consist of continuity points of ψA 

.  

Then φA (α n) = ψA (α n) ≥ ψA (αn) ≥ ψA 

(α0) + 0 > ψA (α0) ≥ ψA (βn) = φA (βn), 

 for each n ∈ N. Hence 

 ∀n ∈ N, φA (α n) − φA (βn)>0, 

which implies that φA is also discontinuous at 

this point. 
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